FIKS, A.F. Diagnosis of a folioceous tumor in the bresst. Zdrav. Turk. 7 no.6x19-23 Je 63. (Mila 16:8) 1. Iz patomorfologicheskoy laboratorii Odesskogo oblastnogo onkologicheskogo dispansera (glavnyy vrach N.A.Novikora nauchnyy rukovoditel: raboty - dotsent K.S.Viner). (BREAST-TUMORS) · "我们的我们的,我们是我们的我们就是我们的,我们是我们的我们的我们的,我们可以不是一个,我们们的我们也是我们的,我们是我们的,我们们们们们们们们们们们们们们 Characteristics of phyllode tumors of the breast ("phyllode cystosarcoma" of earlier authors). Trudy Inst. eksp. morf. AN Gruz. SSR 11:257-262 '63. (MIRA 17:11) 1. Morfologicheskaya laboratoriya Odesskogo oblastnogo onkologicheskogo dispansera. APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413020005-6" FIX3. A.F. (Ologsa, A.14, ul. Kirova, 2, kv.14) Phyllode tumor of the breast and its relation to fibroadenoma and sarnoma. Vop. onk. 10 no.12:21-26 '64. (MIRA 18:6) 1. To Odesekogo oblasinga onkologinheakogo dispansera (glavnyy vracn. N.A. Nevikova) i patelegoanatomicheskogo otdelaniya Odesekogo okruzhnogo voyennogo gospitalya. (MIRA 18:2) FIKS, A.F., (Odessa) Burn and sarcoma of the mammary gland. Khirurgiia 40 no.7: 135-136 J1 '64. > 1. Iz patomorfologicheskoy laboratorii Odessk go oblastnogo onkologicheskogo dispansera (glavnyy vrach - N.A. Novikova). CIA-RDP86-00513R000413020005-6" APPROVED FOR RELEASE: 06/13/2000 PENENKOV, B.L.; FIKS, A.F. Diagnosis of echinococcosis of the abdominal cavity. Klin. khir. no.2:66-69 '65. (MIRA 18:10) 1. Patologoanatomicheskoye otdeleniye (zav.- N.B. Zelenova) 1-y Odesskoy gorodskoy klinicheskoy bol'nitsy. APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413020005-6" FIKS, I.G., insh. THE REPORT OF THE PROPERTY waster in the control of Magnetic field of sector-shaped coil with a constant with a constant thickness. Sbor. DonUGI no.31:98-125 163. Effect of irregularities of the magnetic field of a transducer on the accuracy of an electromagnetic flowmeter. Ibid.:130-143 (MIRA 17:10) APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413020005-6" FIKS, I.C., inzh.; CHUBERKIS, V.P., inzh. Regulating relay of the flow of coal pulp. Sbor. DonUGI no.31:144-148 '63. (MIRA 17:10) APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413020005-6" Simplify the financing of planning and surveying work. Fin. SSSR 22 no.1:73-76 Ja '61. (MIRA 14:1) 1. Nachal'nik otdela L'vovskogo otdeleniya Teploelektroproykt (for Il'in). 2. Nachal'nik otdela L'vovskoy oblastnoy kontory Stroybanka (for Yel'fimova). 3. Starshiy inzhener-ekonomist Giprobuma (for Fiks). (Architecture—Designs and plans) (Lvov Province—Electric power stations—Finance) KALMANOVSKIY, V.I.; KISELEV, A.V.; LEBEDEV, V.P.; SAVINOV, I.M.; SMIRNOV, N.Ya.; FIKS, M.M.; SHCHERBAKOVA, K.D. Gas chromatography in glass capillary columns with a chemically modified surface. Zhur.fiz.khim. 35 no.6:1386-1388 Je '61. (MIRA 14:7) 1. Moskovskiy gosudarstvennyy universitet imeni M.V.Lomonosova i Dzerzhinskiy filial opytno-konstruktorskogo byuro avtomatiki Goskhimkomiteta. (Gas chromatography) APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413020005-6" ZHDANOV, S.P.; KALMANOVSKIY, V.I.; KISELEV, A.V.; FIKS, M.M.; YASHIN, Ya.I. Use of porous glasses as adsorbents in gas chromatography. Zhur.fiz.khim. 36 no.5:1118-1120 My '62. > 1. Institut khimii silikatov AN SSSR; Opytno-konstruktorskoye byuro avtomatiki Gosudarstvennogo komiteta khimicheskoy promyshlennosti pri Sovete Ministrov SSSR, Dzerzhinskiy filial i Moskovskiy gosudarstvennyy universitet imeni Lomonosova, khimicheskiy fakul'tet. (Glass) (Adsorbents) (Gas chromatography) (MIRA 15:8) BUROV, A.N.; KALMANOVSKIY, V.I.; FIKS, M.M.; YANSHIN, Ya.I. Ionization methods for determining microimpurities in gases. Trudy Kom.anal.khim. 13:247-256 '63. (MIRA 16:5) (Ionization of gases) (Gas chromatography) L 20985-66 ENT(1)/EWT(m)/T AT ACCESSION NR: AP5020260 UR/0367/65/002/001/0112/0116 AUTHORS: Vyalov, G. N.; Fiks, M. M. TITLE: On the acceleration of particles with a variable charge in electrostatio SOURCE: Yadernaya fizika, v. 2, no. 1, 1965, 112-116 TOPIC TAGS: electrostatio field, electrostatic acceleration, ion beam, beam velocity ABSTRACT: The possibility of high-current acceleration of heavy ions by changing the ion charge was investigated analytically. The nonpotential characteristic of the product ZE under the integral of the energy equation is shown by $$\Delta W = W_2 - W_1 = c \int_{r_1}^{r_2} Z(E dr).$$ The optimum potential required to impart the maximum energy to the accelerating ion beam with given energy W is calculated and is given by $$V_0 = [Z_1(W) - Z_c(W)] / 2eZ_1(W)Z_c'(W)$$ The various mechanisms for causing intensity losses in the multiple acceleration Cord 1/2 L 20985-66 ACCESSION NR: AP5020260 scheme described above are listed. For a constant ΔW the mean multiple scattering angle at small angles is given by $\frac{1}{10m^2} = \text{const}/\Delta W \cdot W_c$. The scattering cross section for the large angle aperture accelerator is given by $${}^{\prime}\sigma(\theta_L) = \frac{\pi e^{\prime} Z_0{}^{\prime} Z_1{}^{\prime}}{W^2} \frac{\cos \theta_L}{\sin^2 \theta_L} \left[1 - \frac{A_0{}^{\prime}}{A_1{}^{\prime}} \sin^2 \theta_L \right]^{\prime/2},$$ and the beam intensity by $$\frac{1}{I_0} = \left[\sqrt{\frac{\pi}{2}} \int_0^{I_0(x^2)^{t/2}} \exp\left(-\frac{t^2}{2}\right) dt\right]^2 + P(\theta_L).$$ It is shown that for all elements high intensity ion beams can be obtained with the limiting energy $W_R = 0.125 A_0 Z_0^{4/5} M_{200}$. "The authors express their gratitude to corresponding member of the AN SSSR, G. N. Flerov, for his continuous interest in the work and to Professor M. I. Podgoretskiy for his valuable advice and evaluation of the problem." Orig. art. has: 13 formulas. [04] ASSOCIATION: Oblyedinermyy institut yadernykh issledovaniy (Joint Institute of Nuclear Research) SUBMITTED: 17Jan65 ENCL: 00 SUB CODE: NP NO REF SOV: CO2 Card 2/2 BV OTHER: 003 ATD PRESS 4025 APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413020005-6" ACC NR: AP7001192 (A) SOURCE CODE: UR/0407/65/000/05-/0023/0026 AUTHOR: Fursov, S. P. (Kishinev); Lyubchik, M. Ya. (Kishinev); Fiks, M. S. (Kishinev) ORG: none TITLE: Thyristorized power source for electrospank-machining purposes SOURCE: Elektronnaya obrabotka materialov, no. 5-6, 1965, 23-26 TOPIC TAGS: electric power source, power supply, electrospark machining the circuit of the discharge pulses bypass semiconductor devices (see the discharge circuit in heavy lines in the figure). The generator is actually a series-type inverter formed by capacitors C, C, inductor Ind, and thyristors T, T, The inverter is loaded with a bridge circuit consisting of storage capacitors C, C, and diodes B, B,. The work sparkgap shunted by a kohm-range resistor R, is connected diagonally to the bridge. The generator converts d-c energy into homopolar pulses whose rate is equal to the double frequency of the master oscillator used for driving. An experimental hookup was tested at a rate of 800 pulses per sec with a d-c voltage of 150 v and a load resistance of 350 ohms. Principal characteristics (V-I, no-load voltage vs. rate, short-circuit current vs. rate) are shown; highest attainable pulse rate, 2000. Orig. art. has: 6 figures and 1 formula. Card 1/2 F145) TIB AUTHORS: Kaimakov, Ye.A., and Fiks, V.B. 120-6-24/36 TITLE: A Method of Measuring Transport Numbers by a Simultaneous Observation of the Motion of the Ions and the Solution (Metod izmereniya chisel perenosa po sovmestnomu natlyudeniyu dvizheniya ionov i rastvora) PERIODICAL: Pribory i Tekhnika Eksperimenta, 1957, No.6, pp. 95 - 97 (USSR). ABSTRACT: A simple method of measuring transport numbers is described. The method consists in the observation of levels of solutions in a U-tube in which the anode and the cathode sections are separated by a special filter. The method is a modification of the classical experiments of Lodge (Ref.1) and Whetham (Ref.2). Results of measurements on water solutions of NH₄Cl and NaCl are summarised in Figs. 3-5. There are 5 diagrams and 5 non-Slavic references. ASSOCIATION: Physico-technical Institute of the Ac.Sc. USSR. (Fiziko-tekhnicheskiy Institut AN SSSR) SUBMITTED: April 17, 1957. AVAILABLE: Library of Congress Card 1/1 Fixs, V B AUTHOR: TITLE: FIRS.V.B. 57-6-20/36 On the Effect of Convection on Diffusion. (O vliyanii konvektsii na diffuziyu, Russian) Zhurnal Tekhn.Fiz. 1957, Vol 27, Nr 6, pp 1282-1288 (U.S.S.R.) ABSTRACT: PERIODICAL: The diffusion in a liquid which moves in a tube (column) with a velocity v and has a cross section S in the longitudinal direction, is investigated. The motion is assumed to be steady ($\frac{dv}{dt} = 0$) and the liquid as incompressible (div v = 0). It is shown that the influence of convection flows in a liquid upon the shifting of the dissolved substance on certain conditions becomes a mixing of diffusion along the flow axis. The change of the concentration of the dissolved substance is expressed by a differential equation of convection diffusion, where the coefficient of the convection diffusion has the usual physical significance. Card 1/2 . 57-6-20/36 On the Effect of Convection on Diffusion. The limits, within which the equation of convection diffusion is valid, are given. (With i Illustration). ASSOCIATION: PTI, Leningrad PRESENTED BI: SUBMITTED: 30,12,1956 AVAILABLE: Library of Congress Card 2/2 24(6)- 247700 66252 AUTHORS: Pikus, G. Ye, Fiks, V. B. SOV/181-1-7-8/21 TITLE: Electrokinetic Effects in Liquid Metals. I PERIODICAL: Fizika tverdogo tela, 1959, Vol 1, Nr 7, pp 1062-1071 (USSR) ABSTRACT: Liquid metal is assumed to be contained in a thin capillary tube. On the passage of current the wall or an immobile boundary layer receive a pulse in the direction of the electron current as a result of nonelastic electron scattering at the boundary. The inert mass of the liquid is given the same pulse in the opposite direction. In an open capillary tube this effect causes the liquid to flow, whereas an electroosmotic pressure, P, is produced in a closed
tube. This results in the generation of convection currents in the current direction on the walls, in the opposite direction in the center of the capillary tube - which causes the liquid particles to mix. The process is defined by substituting the so-called coefficient of convection diffusion, D_k. On the basis of the active forces, the equation for the steady flow of a viscous liquid, and the current distribution j(z) over the capillary tube cross section, Q is obtained as "transport current", that is the quantity of liquid passing through the capillary tube cross section Card 1/4 W APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413020005-6" 662**52** Electrokinetic Effects in Liquid Metals. I 507/181-1-7-8/21 per unit of time and length, for the open, round capillary tube: $$Q_{\Delta P=0} = 0.1s(1-\epsilon)\frac{en E \ell^2}{n}$$. n denotes viscosity, ℓ free path of the electron on the Fermi surface, & the reflection coefficient, and n the electron density. The electroosmotic pressure is obtained from $\nabla P = 0.8(1-8)$ en $E(\frac{l}{a})^2$, where a is the radius of the capillary tube. $D_{k} = \frac{10^{-4}}{5.124 \, D} \left(\frac{\nabla P \, d^{3}}{\eta}\right)^{2}$ results as diffusion coefficient for a plane capillary tube, $\frac{10^{-4}}{0.3072 \, D} \left(\frac{\nabla P \, a^{3}}{\eta}\right)^{2}$ for a cylindrical capillary tube, where D denotes the ordinary diffusion coefficient. The phenomenon plays an important part in the separation of alloy components or isotopes. The above formulas hold for free electrons. Card 2/4 4 66252 SOV/181-1-7-8/21 Electrokinetic Effects in Liquid Metals. I If they ought to hold for bound electrons, $$N_{eff} = -\frac{m}{4\pi^3 k^2} \int \frac{(\frac{\partial E}{\partial kx})^2}{(\frac{\partial E}{\partial kx})^2} \frac{\partial f}{\partial E} d\tau_k \quad \text{is to be substituted for n.}$$ following relations result for the "transport flow and potential" when using the principle of symmetry of Onsager's kinetic coefficients: $$\overline{j}\Big|_{\nabla V=0} = -0.1(1-\epsilon)\frac{e\ell^2}{\eta} \nabla P \quad , \quad \Delta V\Big|_{\dot{J}=0} = -0.1(1-\epsilon)\frac{eN_{eff}\ell^2}{\sigma \eta} \Delta P \quad .$$ A table shows the ratio of the electroosmotic pressure ΔP to (1-E) ΔV , of ΔV to (1-E) ΔP , and the ratio of the convection diffusion coefficient D_k to (1-E) 2 E^2 for sodium, potassium, lithium, and mercury. ΔV denotes the potential difference at the Card 3/4 #### "APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413020005-6 a hardrage rate more electrones esta estados. Obtoberado electrones el como 66252 Electrokinetic Effects in Liquid Metals. I 507/181-1-7-8/21 ends of the capillary tube, ΔP the pressure difference, E the field strength in the liquid. These values hold only for laminar flows. Theory and the values hold only if & greatly exceeds the interatomic distance. All these data are also applicable to semiconductors. An exact solution for a cylindrical capillary tube is given in an appendix. There are 1 table and 10 references, 4 of which are Soviet. ASSOCIATION: Institut poluprovodnikov AN SSSR, Leningrad (Institute of Semiconductors, AS USSR, Leningrad) SUBMITTED: May 5, 1958 Card 4/4 -24 (6) - 24,2110 66264 AUTHORS: Fiks, V. B., Pikus, G. Ye SOV/181-1-7-20/21 TITLE: Electrokinetic Effects and Electronic Viscosity in Liquid Metals.II PERIODICAL: Fizika tverdogo tela, 1959, Vol 1, Nr 7, pp 1147 - 1158 (USSR) ABSTRACT: When liquid metal contained in a thin capillary tube is caused to flow through it, "transport current" is produced on the wall as a result of nonelastic electron scattering. It is shown here that the "transport current", which is produced in the volume by nonuniform velocity distribution over the capillary tube cross section, leads to what is called electronic viscosity of the liquic metal. An additional expression for the "transport current" density is obtained by solving the kinetic equation. "Transport current I" itself is then defined by the relation $I \simeq -0.1(1-\epsilon) \operatorname{enl}^2 d \frac{\nabla P}{\gamma}.$ When the "transport current" is assumed to consist of two parts, i.e. the current in the volume and the surface current, it holds: $I = -0.1s(1-\epsilon) \operatorname{enl}^2 d \frac{\nabla P}{\gamma}.$ The "transport potential" at the ends of the open conductor is given by Card 1/3 1 APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413020005-6 66264 Electrokinetic Effects and Electronic Viscosity in Liquid Metals.II sov/181-1-7-20/21 the relation $\Delta V|_{I=0} = -0.1(1-\epsilon) \frac{\mathrm{enl}^2}{\sigma \eta} \Delta P$ (for denotation see Paper 1). These formulas apply to free electrons. For bound electrons, n is to be transformed into electrons, n is to be transformed into $N_{eff} = -\frac{m}{4\pi\hbar^2} \int \left(\frac{\partial E}{\partial k_X}\right)^2 \frac{\partial fo}{\partial \mathcal{E}} d\vec{\tau}_k, \text{ where \mathcal{E} denotes the electron}$ energy, \vec{k} its quasi-momentum. By transforming wave vector \vec{k} in the transition from the moving to the immobile coordinate system it is shown that the transformation of n into N eff is correct. The "transport current" influences the flow of the liquid, which is termed secondary electrokinetic effect. The velocity distribution along the cross section does not change, while the viscosity of the liquid changes. $\gamma_e = \frac{1}{5} \frac{enl}{\mu}$ is the contribution made by electrons to the viscosity. This is called electronic viscosity. It is shown by R. Cambers' method that the formula set up for the volume current holds also for the general case and, accordingly, also the expression for electronic viscosity. Its special measurement is difficult; according to the table, Card 2/3 **APPROVED FOR RELEASE: 06/13/2000** CIA-RDP86-00513R000413020005-6" THE PARTY WAS ARE SEEN WERE WELLING BY THE PARTY OF P 66264 Electrokinetic Effects and Electronic Viscosity in Liquid Metals.II SOV/181-1-7-20/21 its contribution to the total viscosity amounts to 10-20%. Separation of the contribution of electronic viscosity may be possible by measuring the variation of viscosity in the magnetic field. Contrary to the "volume transport current", the surface current disturbs the velocity distribution, i.e. according to Poiseuille's law. The secondary electrokinetic effects can be described by electronic viscosity only if the forces acting upon the liquid vary but little over a distance of the order of 1. An appendix presents the exact solution for a cylindrical capillary tube. There are 1 figure, 1 table, and 4 references, 1 of which is Soviet. ASSOCIATION: Institut Poluprovodnikov AN SSSR, Leningrad (Institute of Semiconductors, AS USSR, Leningrad) SUBMITTED: May 5, 1958 Card 3/3 CIA-RDP86-00513R000413020005-6 24.7700 SOV/181-1-8-32/32 Fiks, V.B. AUTHOR: Entrainment of Ions by Electrons in Semiconductors TITLE: Fizika tverdogo tela, 1959, Vol 1, Nr 8, pp 1321-1323 (USSR) PERIODICAL: The author analyzed the entraining effects in semiconductors ABSTRACT: by means of the expression mentioned in reference 1. This expression had been derived in the free electron approximation for the force exerted by electrons. The experimentally observable ion mobilities are the actual mobilities (ueff) which are related with the true mobility by the relation $u_{eff} = u_{o}(1 - nl\sigma_{i})$. Here, n denotes the concentration, 1 the free path of electrons in the semiconductor, and σ_i the mean scattering cross section. The entraining effects become essential if the product nld is of the order of unity. With $nlo_{i} > 1$, the actual mobility of the positive ions changes its. sign. In this case the force exerted by the electrons on the ions is larger than the force of the outer field. The author then estimates the concentration of electrons in which the entraining effects in the semiconductors acquire an essential Card 1/3 Entrainment of Ions by Electrons in Semiconductors SOV/181-1-8-32/32 POR CONTROL SERVICE BUILDING FRANCE CONTROL OF silicon as observed by Boltaks and others is perhaps related to the entrainment of ions by electrons. In negative ions the entrainment by electrons superposes with the motion in an electric field and increases the actual mobility. The actual mobility of neutral atoms in semiconductors is entirely dependent on the entrainment of such atoms by electrons, and the negative atoms travel like negatively-charged ions. The investigation of entraining effects on the basis of the actual neutron and neutron atom mobility may offer an expedient method for the investigation of the mechanism of electron scattering at impurity centers. The present report does not deal with the entraining effects caused by the holes. They were not taken into account in the estimation of the inversion temperature either. The author thanks M.I. Klinger, G.Ye. Pikus and L.S. Stil'bans for their discussion. There are 2 Soviet references. ASSOCIATION: Institut poluprovodnikov AN SSSR, Leningrad (Institute of Semiconductors of the AS USSR, Leningrad) SUBMITTED: Card 3/3 May 4, 1959 S/181/60/002/01/15/035 B008/B011 AUTHORS: Fiks, V. B., Pikus, G. Ye. TITLE: Electrokinetic Effects in Liquid Semiconductors PERIODICAL: Fizika tverdogo tela, 1960, Vol. 2, No. 1, pp. 65 - 66 TEXT: The authors investigated the phenomena brought about by the formation of a volume charge layer on the semiconductor surface. They resemble the electrokinetic phenomena to be seen in electrolytes and can be determined in a similar manner. Since, however, the conductivity of a semiconductor is considerably lower, appreciably stronger fields can be generated therein, and the phenomena themselves can be stronger as compared with metals. The measurement of electrokinetic phenomena allows a direct determination of the potential difference φ_0 between the surface of the semiconductor and the volume.
If the capillary walls are metalized from within, and there are no additional charges on the semiconductor surface, φ_0 then equates the potential difference of the contact between metal and semiconductor. If the capillary walls are electric, φ_0 is only determined by the charge on the surface levels. Card 1/2 16. 15.00 million 16.15 milli Electrokinetic Effects in Liquid Semiconductors S/181/60/002/01/15/035 B008/B011 If the capillary is metalized from outside, the charge can be changed in the layer near the interface by the generation of a transverse electric field between metal and semiconductor. Much like in experiments with the field effect (Ref. 2), the charge on the surface traps and the volume charge produced by the carriers can be determined by measuring the dependence of $\phi_{\rm O}$ on the induced charge. There are 2 Soviet references. ASSOCIATION: Institut poluprovodnikov AN SSSR, Leningrad (Institute of Semiconductors, AS USSR, Leningrad) SUBMITTED: May 14, 1959 X Card 2/2 FIKS, V.B. 81967 S/181/60/002/04/29/034 B002/B063 5.5000 AUTHORS: Fiks, V. B., Pikus, G. Ye. TITLE: Analysis of Microimpurities by Means of a Magnetic Resonance Mass Spectrometer \\ PERIODICAL: Fizika tverdogo tela, 1960, Vol. 2, No. 4, pp. 716-727 TEXT: When high-purity materials are subjected to a mass-spectrometric analysis, their sensitivity is considerably reduced by the background formed by molecules and atoms of the residual gas. This drawback could be largely avoided by two or three spectrometers connected in series. However, such a setup is very complicated. In the paper under review, the authors suggest a so-called resonance mass spectrometer which is based on the principle of a synchrocyclotron. The particles are electrically accelerated and then forced to enter almost circular paths by means of a magnetic field. With the aid of electric pulses, the particles are accelerated in packets. The rest comes out of phase (Figs. 1 and 2). The authors calculated the resolution of the instrument and the sensitivity in the analysis of microimpurities. The measurable minimum concentration is, theoretically, about Card 1/2 W Analysis of Microimpurities by Means of a S/181/60/002/04/29/034 Magnetic Resonance Mass Spectrometer B002/B063 10⁻⁹. This requires the highest number of pulses possible, i.e., the highest number of ion packets possible per unit of time; a low resolution; and a small number of revolutions in the magnetic field. There are 3 figures and 10 references: 6 Soviet and 4 British. ASSOCIATION: Institut poluprovodnikov AN SSSR, Leningrad (Institute of Semiconductors of the AS USSR, Leningrad) X SUBMITTED: July 22, 1959 Card 2/2 9.4300 (1143,1155) S/181/60/002/012/018/018 B006/B063 AUTHORS: Pikus, G. Ye. and Fiks, V. B. TITLE: Microimpurity Analysis by Means of a Magnetic Resonance Mass Spectrometer. II. Calculation of the Background Current PERIODICAL: Fizika tverdogo tela, 1960, Vol. 2, No. 12, pp. 3120-3128 TEXT: The accuracy of mass-spectrometric microimpurity analysis is limited chiefly by the background current which is due to ions of the main beam components inciding upon the receiver after scattering in the residual gas. The most effective method of eliminating the scattered-ion background is to use several spectrometers in stage operation. Part I of the present paper has shown that a magnetic resonance mass spectrometer can be used as a multistage separator, in which each revolution of the ions constitutes a stage of the separating cascade. The present paper presents a calculation of the background current in such a device which is schematically represented in Fig. 1; q is the source of the ion beam which is bent in the magnetic field and hits a three-grid modulator m. A positive retarding voltage V3, which is higher than the accelerating Card 1/4 Microimpurity Analysis by Means of a Magnetic S/181/60/002/012/018/018 Resonance Mass Spectrometer. II. Calculation B006/B063 of the Background Current voltage (V_q) in the source, is applied to the central grid of the modulator. Accelerating pulses (amplitude: V_m ; interval: T_m ; duration: τ) reach grid C of the modulator. As $V_m > (V_3 - V_q)$, an accelerating field is produced in the modulator after some time, in which the energy of the penetrating ions is increased by ΔE_i . The period of revolution T_i is given as $T_i = kT_m, k = 1, 2, 3...$ Denoting the ion mass by M_i gives $T_i = 652 \cdot 10^{-6} (M_i/H)$ sec. The total current hitting the collector is proportional to k. A retarding field reflecting the scattered ions is produced in front of the collector. The two accelerating fields (in the modulator and in front of the collector) eliminate those components of the background current which are due to scattering of non-resonance ions by the collector and to multiple revolution of non-resonance ions. The authors have studied that background current which is due to ion-beam shuttering. This effect cannot be eliminated by retarding fields. The portion of ions scattered by the residual gas is called the shuttering coefficient w; the background current is given by I_i w, where Card 2/4 Microimpurity Analysis by Means of a Magnetic S/181/60/Resonance Mass Spectrometer. II. Calculation B006/B063 of the Background Current S/181/60/002/012/018/018 B006/B063 I is the current of the main component. The authors consider only the case where beams of ions of similar masses overlap, since ions with largely differing masses usually do not reach the slit of the modulator. For ions reaching the slit of width L, the conditions $\Delta M/M \subseteq L/R$ must be satisfied, where ΔM is the difference in mass of resonance and scattered ions. For this case, the authors investigate the effect of operation parameters and derive explicit formulas for w. These expressions are then applied to some special cases: 1) scattering by induced dipoles; 2) scattering by molecules with rigid dipoles. In the first case one obtains $w \approx 4.10^{-6}$ for ions with $\Delta M/M \approx 10^{-2}$ and $w \approx 3.10^{-4}$ for ions with $\Delta M/M \approx 10^{-2}$. In the second case one finds $w = 1.4 \cdot 10^{-6}$ ($\Delta M/M = 10^{-2}$) and $w = 5.10^{-4}$ ($\Delta M/M = 2.10^{-3}$). Since the total shuttering coefficient in a resonance mass spectrometer after N revolutions equals w^N , it is sufficient to choose N = 3 - 4 for eliminating the background due to scattering. There are 4 figures and 4 references: 3 Soviet and 1 US. Card 3/4 FIKS, V.B. 28107 5/181/61/003/009/035/039 B108/B138 24,7700/1160/1462,1864) AUTHOP: TITLE: Effect of a magnetic field on ion migration in liquid metals PERIODICAL: Fizika tverdogo tela, v. 3, no. 9, 1961, 2868-287C TEXT; It has not been possible so far to calculate the electron-ion scattering pross section with sufficient accuracy, to determine the charge of impurity ions. Migration experiments in liquid metals are suitable for this purpose, since the ion mobility and consequently, Hall effect, are not too small to be observed. The force acting upon an impurity ion in an equilibrium liquid metal under the effects of electric field in the x-direction and magnetic field in the z-direction is $F_i = Vpv_i + z_i E_{Hall} + F_{ei}$ In this equation, v_i denotes the ion volume, z_i - its charge, $F_{ei}^{(y)}$ force due to electron-ion scattering and causing ion transport by the electrons (V. B. Fiks. FTT, I, 1, 16, 1959). This force is proportional to the current flowing in the y-direction. In first approximation the Card 1/3 28101 S/181/61/003/009/035/039 B108/B139 Effect of a magnetic field on ion ... electron gas is totally degenerate and $F_{ei}^{(y)}=0$. The pressure gradient is $\nabla p=\frac{1}{c}[j,H]$, the internal Hall field $E_{Hall}=-\frac{1}{c}[vH]$, and the current density j=env. v denotes the velocity of electrons with Fermi energy. With these substitutions, the force F_i is given by the following expression: $F_i=E_{Hall}(z_1-env_i)$, v_i is the volume of an impurity ion. This force leads to a change in impurity-ion concentration in the y-direction, and to an ion current in this direction. The relative change in concentration is $\frac{\Delta c}{c}=F_{i,kT}$, where 1 denotes the y-dimension of the sample. The change in ion concentration is estimated for an experiment in which $E_{Hall}=10^{-9}$, RjH. For alkali metals $Re2\cdot10^{-3}$ om $\frac{3}{c}$ /coulomb; then if $j=10^4$ $\frac{4}{a}$ /cm and $\frac{1}{B}=4\cdot10^4$ density the about $\frac{10}{a}$ at $\frac{1}{B}=\frac{3}{a}$ 000 K. The ion charge may then be determined from the expression (z_i-env_i) when the ion volume in the metal solvent is $\frac{3}{B}$ and $\frac{3}{B}$ Effect of a magnetic field on ion ... 25101 S/181/61/003/009/035/039 B108/B138 known. The only thing one has to do is to measure the ion concentration in the y-direction. In semiconductors, where the Hall field is stronger than in metals, migration and ion transport by electrons is more effective and may therefore not always be neglected. There are 4 Soviet references. ASSOCIATION: Institut poluprovodnikov AN SSSR Leningrad (Semiconductor Institute of the AS USSR Leningrad) SUBMITTED: May 9, 1961 Card 3/3 APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413020005-6" L 19161-63 EWT(1)/BDS AFFTC/ASD/ESD-3/SSD/IJP(C) ACCESSION NR: AP3005328 . \$/0181/63/005/008/2213/2218 AUTHOR: Fiks, V. B. TITLE: Transmission of an impurity-center pulse in a lattice by electron SOURCE: Fizika tverdogo tela, v. 5, no. 8, 1963, 2213-2218 TOPIC TAGS: impurity center, lattice, electron scattering, conduction electron, pulse, quasimomentum, free electron ABSTRACT: The transmission of a pulse from scattered electrons to an impurity center determines the mechanism of ion drag by conduction electrons. It is shown that in a periodic lattice the pulse transmitted to an impurity center is determined by the change in quasimomentum of the scattered electrons and
not to the change in its average pulse, as takes place for free electrons. The expression for the value of this pulse is h(k-k!), where the terms represent standard values. "The author expresses his deep thanks to M. I. Kaganov, I. M. Lifshits, and V. M. Tsukernik for their discussions of the work." Orig. art. has: 35 formulas. Institute of Semiconductors, Academy of Sciences, SSSR Card 1/2/ ACCESSION NR: APLOO4852 S/0181/63/005/012/3473/3479 AUTHOR: Files, V. B. TITLE: Ion dragging by electrons, and thermal diffusion in metals SOURCE: Fisika tverdogo tela, v. 5, no. 12, 1963, 3473-3479 TOPIC TAGS: thermal diffusion, thermodiffusion, ion dragging, ion dragging effect, thermal diffusion transfer, diffusion, diffusion coefficient, metal thermal diffusion, metal thermal ABSTRACT: The author has shown that ion dragging by electrons, conditioned by the transmission of an impulse from electrons to impurity centers, produces a supplementary contribution to the thermal-diffusion stream of impurity ions. This effect for multicharged impurity ions in good metallic conductors may be very substantial. The author begins with a consideration of thermal diffusion of impurity ions in a molten metal and applies the results to a solid metal. In the solid, the force acting on an impurity ion by virtue of lattice strain cannot be said to be equal to the pressure-volume gradient vector, however, as in a liquid. But, since the deciding contribution is the ion dragging by electrons, this circumstance is not **Card 1/2** ACCESSION NR: APLOOL852 essential in evaluating the effect. When an impurity is diffused through interstices, the heat of transfer, for the solvent, is zero. The activation energy for diffusion in solids is on the order of an electron volt, and the contribution of electrons will therefore become marked at high temperatures for impurities with low activation energies. It is noted that thermal-diffusion transfer must take place in a homogeneous metal free of impurities, since an activated ion is actually a lattice defect. The contribution of electrons in thermal diffusion takes place in semiconductors as well as in metals. Orig. art. has: 39 formulas. ASSOCIATION: Institut poluprovodnikov AN SSSR, Leningrad (Institute of Semiconductors AN SSSR) SUBMITTED: 28Jun63 DATE ACQ: 03Jan6h ENCL: 00 SUB CODE: PH NO RIF SOV: CO2 OTHER: 006 Card 2/2 IL'INSKIY, O.B.; FIKS, V.B. Mechanism of the genesis of stimulation in solitary mechanoreceptors. Dokl. AN SSSR 152 no.1:218-220 S '63. (MIRA 16:9) 1. Predstavleno akademikom V.N.Chernigovskim. (RECEPTORS (NEUROLOGY)): | | SOURCE TOPIC of factor, Fermi a relaxat ABSTRAC lattice the fix transfer the following followin | AUTHOR: Fiks, V. B. TITLE: Electron drag on ions in a cryst SOURCE: Fizika tverdogo tela, v. 6, no. TOPIC TACS: electron drag, crystal latt factor, wave vector, wave function, district Fermi surface, scattering cross section, relaxation time, vacancy, Maxwell district ABSTRACT: The author studied the phenome lattices, considering the forces acting a the fixed extrinsic centers of a mormal i transfer was considered for an ideal crys the following general expression was deriv [Ap = \(\sum_{(k-\(k_i))} = \) [ard]1/5 | | | stice, impulse transfer, ion scattering tribution function, Hamilton equation, isoenergetic surface, collision integral, ibution menon of electron drag on ions in crystal along the direction of the electrons on ion lattice. The process of impulse- ived for the absence of external field and | | | | |------------|--|---|--|-----|---|---|--|--| | | Card 1/5 | Antonia del pro esta del como com | | 41) | "aty X | - | | | | ANTERIOR S | | | | | | | | | ACCESSION NR: AP4039639 $$\times \sum_{\theta} C_{kk_f}^{\theta} (\hbar i k - \hbar k_f - 2\pi b_{\theta}) d\tau_{k_f}$$ where k_f is the reduced wave vector in the final state, $\langle k_f \rangle$ is its quantum mechanical average, ankf the wave function, CEkk, the probability describing the scattering process, bg is the base vector in the space of the lattice and $b_{s} = g_{1}b_{1} + g_{2}b_{2} + g_{3}b_{3}$ where gi is an integer (including sero). The following expression was derived $$F_{el} = \frac{1}{N_{e}(4\pi^{3})^{2}} \iint_{k_{f}} \sum_{k_{f}} h(k_{x} - k_{xf} - 2\pi b_{x}) W_{kxf}^{2} f(k) \times \\ \times [1 - f(k_{f})] d^{3}k d^{3}k_{f}.$$ where N_i is the number of extrinsic centers per unit volume, $W_{\mathbf{k}\mathbf{k}_{\mathbf{l}}}^{\mathbf{g}}$ the a priori probability per unit volume of transition from an occupied state to an unoccupied state, and f(k) is the distribution function for electrons. These general expressions could be simplified if the mesh in k space were chosen so that the Fermi surface would lie wholly inside the mesh. Then, neglecting the transfer process, (transfer of electrons, after scattering, to the neighboring mesh), the | following expressions were obtained $W_{i,j}^* = 0 \text{ npw } g \neq 0, \qquad F_{i,i} = -\frac{1}{N_i d^2 k} \int_{i}^{k} k_i \rho_{i}/d^2 k^{-\frac{1}{2}},$ where the collision integral has the form $\begin{pmatrix} \frac{\partial f}{\partial t} & -\frac{\partial f}{\partial t} \\ -\frac{\partial f}{\partial t} \end{pmatrix} = \int_{i}^{k} \{f(k)[1-f(k)]W_{i,j}-f(k)[1-f(k)]W_{i,j}] \frac{d^2kf}{dx^2}.$ The collision integral was analyzed under the following approximations: 1.) Assuming that the isoenergetic surfaces are spheres, a linear approximation are obtained $f_i = \frac{\partial f_i}{\partial t} \frac{\partial e}{\partial t} = \frac{f_i}{\partial $ | | ALCERSION WR: | AP4039639 | |
--|-------------------------|--|--|--| | where the collision integral has the form | | following expre | saions were obtained | | | | | $W_{k_{l}} = 0$ np | $H g \neq 0$, $F = 1$ | | | The collision integral was analyzed under the following approximations: 1) Assuming that the iscenergetic surfaces are spheres, a linear approximation is made using a relaxation time for scattering. Then the following expressions $ \int_{1}^{\infty} \frac{ds_{i}}{dt} \int_{0}^{\infty} \frac$ | | | | | | 1) Assuming that the isoemergetic surfaces are spheres, a linear approximation is made using a relaxation time for scattering. Then the following expressions $f_1 = \frac{\partial f_0}{\partial t} \frac{\partial t}{\partial t} = \frac{\partial f_0}{\partial t} \frac{\partial f}{\partial t}$ | | $\left(\frac{\partial f}{\partial \ell}\right)_{\ell=1}^{(r)}$ | $P_{i} = \left(f(k) \left(1 - f(k) \right) \right) $ | 431. | | are obtained A stantion time for scattering. Then the following expressions $ \int_{i} = \frac{d\theta}{dt} \int_{0}^{i} \int_{0}^{t} \frac{d\theta}{dt} \int_{0}^{t} \frac{d\theta}{dt} dt $ $ \int_{i} = v_{i}v_{i}^{2} $ $ \int_{0}^{t} \frac{d\theta}{dt} \int_{0}^{t} \frac{d\theta}{dt} dt | | The collision is | itegral was analysis W_{kkj} | 42 | | are obtained A stantion time for scattering. Then the following expressions $ \int_{i} = \frac{d\theta}{dt} \int_{0}^{i} \int_{0}^{t} \frac{d\theta}{dt} \int_{0}^{t} \frac{d\theta}{dt} dt $ $ \int_{i} = v_{i}v_{i}^{2} $ $ \int_{0}^{t} \frac{d\theta}{dt} \int_{0}^{t} \frac{d\theta}{dt} dt | | 1) Assuming that | the isoenergetic surfaces are spheres | oximations: | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | are obtained | attacktion time for scattering. Then the | inear approximation | | $ v_{j} = v_{j} v_{j}$ $ v_{j} = v_{j} v_{j}$ $ v_{j} = v_{j} v_{j}$ | | | $f_1 = -\frac{\theta_0}{\theta_0} \frac{\partial e}{\partial t}
\frac{\partial F}{\partial t} = -\frac{\theta_0}{\theta_0} \frac{\partial F}{\partial t}$ | -touring expressions | | $F_{ij} = enl_{ij}E_{ij}$ | | | I de la companya l | | | $F_{ij} = enl_{ij}E_{ij}$ | | | | | | Here T is the relaxation time for electrons, including all types of scattering, | | | (C) | | | Here T is the relaxation time for electrons, including all types of scattering, | | : | $F_{ij} = enl_{ij}F_{ij}$ | | | Card 3/5 | | Here T is the r | elexation time for electrons | | | | | Card 3/5 | and all including all | types of scattering, | | | | | | Man I Strate was an annual strategy of the str | | | | • | | | | | | | | | | | 96 (440 °)
65 (1907) | | | | | | 119 ST 1180 | | | | ACCESSION NR: AP4039639 \mathcal{T}_1 the relaxation time for electron-ion scattering, n the electron density, \mathcal{L}_1 the total mean free path, v_f the valocity, l_i the mean free path for scattering by ions, and δ_1 the scattering cross section. 2) The other approximation made was when the number of unoccupied states in the conduction zone was much less than the number of states occupied by electrons. Then the dependence of the electron energy on the quasi-impulse showed that the transport of vacancy states corresponded to the motion of positively charged quasi-particles or holes. For this case an expression is derived for Fei under the quasi-classical assumption $F_{ii} = \frac{m^{\bullet}}{N_{i} \sigma \tau_{i}} j_{i}$ where ma is the effective mass of the electron and j the current density. For the case in which f_0 is a Maxwellian, F_{ij} and the ratio F_i/F , which represented the 'drag', are computed. The author expresses his deep appreciation of the discussions of this work with I. M. Lifshits, V. N. Gribov, and M. I. Kagan. Orig. art. has: 85 equations and 1 figure. ASSOCIATION: Institut poluprovodnikov AN SSSR, Leningrad (Institute of Semicon- Card 4/5 "APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413020005-6 FIKS, V.B. Entrainment of ions by electrons in the crystal lattice. Fiz. tver. tela 6 no.6:1589-1601 Je '64. (MIRA 17:9) 1. Institut poluprovodnikov AN SSSR, Leningrad. Time: On the scattering of an electron by an impurity center **Topic TAGS: electron scattering, impurity center, momentum transfer, dispersion relation, electron collision ABSTRACT: The manner whereby the momentum transfer to an impurity **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAGS: a cattered electron is governed by the concrete scat **Topic TAG ACCESSION NR: AP4043346 s/0181/64/006/008/2307/2313 AUTHOR: Fiks, V. B. TITLE: Dynamic (effective) charge of the ions of a metal SOURCE: Fizika tverdogo tela, v. 6, no. 8, 1964, 2307-2313 TOPIC TAGS: ion charge change, ion conductivity, atomic ion, atomic energy level, conduction band, crystal lattice, metal ABSTRACT: The dynamic charge of the atoms of a single-component metal is defined here as the coefficient of proportionality between the force acting on the atom and the intensity of the external electric field. It is determined from the condition of mechanical equilibrium of the external field forces acting on the metal atoms, and the resultant force exerted on the lattice by the conduction electrons. It is calculated in the present article assuming the electrons to be completely free, and with allowance for the transfer of Card | 1/2 APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413020005-6" and the second of o ACCESSION NR: AP4043346 momentum from the scattered electrons to the lattice defects. Calculations are presented for two types of closed Fermi surfaces, electron and hole, with umklapp processes neglected. In the case of open Fermi surfaces, umklapp cannot be excluded even in neighboring cells, and the resultant expression shows that the dynamic charge can depend in such a case not only on the geometry of the surface but also on the scattering mechanism. It is pointed out in conclusion that the results do not apply to activated (diffusing) atoms in a metal, or to alloys where redistribution of electrons among the components can take place. "The author is grateful to M. I. Kaganov and I. M. Lifshits for very useful discussions." Orig. art. has: 1 figure and 31 formulas. ASSOCIATION: Institut poluprovodnikov AN SSSR, Leningrad (Institute of Semiconductors, AN SSSR) SUBMITTED: 12Feb64 ENCL: 00 SUB CODE: SS,NP NR REF SOV: 004 OTHER: 000 Card 2/2 KAGANOV, M.I.; LIFSHITS, I.M.; FIKS, V.B. Electron scattering by impurity centers. Fiz. tver. tela 6 no.9: 2723-2728 S 164. (MIRA 17:11) 1. Institut poluprovodnikov AN SSSR, Leningrad. Instone separation by the ionic mobility method. Thur. fiz. knim. 32 no.6:1647-1651 Je '64. (MIRA 18:3) 1. Piziko-tekhnicheskiy institut imeni lofte AN SSSR. EDELTATIE 7, B.T., PIR., 7.5. Separation of isotopes by 'ne mahawi of londe methodis. Abur.112. Min. 36 mo.8:1902-1903 sg 'e4. (MIRA 13:1) 1. Finike-tekhnicheskiy institut AM SSSR (man) A.P. (effe. FIKS, V.B. Separation of potassium and rubidium isotopes bases on their mobilities in KCl and RbCl solutions. Zhur. fiz. khim. 38 no.9:2257-2259 S '64. (MIRA 17:12) 1. Fiziko-tekhnicheskiy institut imeni Ioffe AN SSSR. KONSTANTINOV, B.P.; FIKS, V.B. Spearation of isotopes by the ion mobility method. Part 3. Zhur. fiz. khim. 38 no.9:2255-2257 S 164. (MIRA 17:12) 1. Fiziko-tekhnicheskiy institut imeni Ioffe, AN SSSR. BAKULIN, Ye.A.; TROSHIN, V.P.; FIKS, V.B. Temperature dependence of the relative difference in mobilities of isotopic lithium ions. Zhur. fiz. khim. 38 no.9:2262-2263 S 164. (MIRA 17:12) 1. Fiziko-tekhnicheskiy institut imeni Ioffe AN SSSR. IL'INSKIY, O.B.; FIKS, V.B.; KHRAPKOVA, S.I. Effect of temperature on the bioelectric activity of Pacinian bodies. Dokl. AN SSSR 164 no.1:227-229 S '65. (MIRA 18:9) 1. Institut fiziologii im. I.P. Pavlova AN SSSR. Submitted July 23, 1964. FIKS, V. I. USSR/Electricity - Relays Nov 50 Contacts "Studying the Burning of Relay Contacts," V. L. Fike, Engr, Moscow Power Eng Inst imeni Molotov "Elektrichestvo" No 11, pp 71-74 Describes studies using high-speed film by means of so-called "time loop" device. High-speed filming permitted establishing principles of contact opening and closing of 0.073 sec duration, and separate stages of this process lasting 0.005 sec. Submitted 8 Apr 50. | ~- | | | |----|--|--| | | USSR/Electricity - Machines, Electric Jul 51 Windings | | | | "Displacement of Current in Slots of Trapezoidal Form," V. L. Fiks, Engr, Moscow | | | | "Elektrichestvo" No 7, pp 58-61 | | | | Gives an analytical method for calcg losses in a winding due to displacement of current for a trapezoidal slot. A Bessel function used in the soln permits accurate consideration for the characteristics of the slot form. Submitted 23 Dec 50. | | | | | | | | 199124 | | | | | | | | i a barrense errenne ern errenner | |--|-----------------------------------| | THE SWI(d)/EWI(1)/EWG(v)/FCC/EEC-4/REC(5)/RWA(5) TO LECTED | | | Total Sp. Ya. A. | | | Tille: Signal distortion due to multipath scatter in the ionosphere | | | SOURCE: Elektrosvyaz', no. 10, 1964, 7-16 | | | TOPIC TAGS: ionospheric scatter, signal distortion, scatter propaga | ation at the second second | | A line The spectral and time distortions of an E-layer's latter to the multipath rature of propagations. | | | totare of signal distortion. Formulas for the cheft here. | | | | | FIKS-MARGCLIN, G.B. Device for determining the deformation of lathes. Izv.vys.ucheb.mav.; prib. 3 no.4;53-58 '60. (MIRA 13:9) 1. Sredneaziatskiy politekhnicheskiy institut. Rekom. kafedroy tekhnologii mashinostroyeniya. (Lathes—Testing) FIRSEL!, G.K., inzh.; KUROCHKA, A.L., inzh.; BABIN, A.S., inzh. Some practical aspects of operating VL23 series electric locomotives. Elek. i tepl. tiaga 3 no.2:33-37 F '59. (MIRA 12:4) (Electric locomotives) AUTHOR TITLE FIKSHIS, M.M. Electric Slag Welding by means of Magnetic Step-by-step Apparatuses. (Elektroshlakovaya svarka magnitno-shagayushchimi apparata- 121-8-10/22 mi. - Russian) PERIODICAL Stanki i Imstrument 1957, Vol 28, Nr
8, pp 29-32 (USSE) ABSTRACT This process which is especially suitable for the welding of heavy plates was worked out by the Institute for Electric Welding of the Academy of Science of the USSR and was introduced to the most important works of the country. The essential part of this process consists in the fact that welding is carried out by means of two magnetic stepby-step apparatus mod. A-501 which move on both sides of the part of construction to be welded at the same time. The usual apparatus A-501 is illustrated and explained. The operation speed (welding speed) is regulated within the limits of from 1-9 m/hr. The supply of the electrode wire is agranged by a special mechanism like that of a pipe. During the welding process the electrode apparatus wust be regulated by means of a mechanism. Welding generators serve as current supply. Welding is carried out by means of d.c. current of reverse polarity. An CARD 1/2 van saare la leurina massarinin est il est APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413020005-6" 121-8-10/22 Electric Slag Welding by means of Magnetic Step-by-Step Apparatuses. illustration shows a general view of the apparatus. Four different kinds of welding of T-shaped and angular connections can be carried out by means of magnetic step-bystep apparatuses, as is shown by illustrations and is also described and explained later. In order to avoid a tilting of the apparatus on the occasion of its disconnection it is hung up as is shown an illustration. The adjustment of the apparatus is described in detail and illustrated. The electric slag process flows steadily with a voltage of from 28-38 V; the operation voltage desired is 32-34 V. With such apparatuses plates of a thickness of from 40-100 mm can be welded together. The advantages of this welding method are: high quality of welding seam, density of metal, the lack of slag inclusions and a welding capacity which is from 2-2,5 times greater than that of handwork. The light weight of the apparatus (25 kg) and its small size (250 x 300 x 420 mm) makes if easy to handle and renders welding at places which are not easily accessable possible. (9 references) ASSOCIATION: not given. PRESENTED BY: . SUBMITTED: AVAILABLE: Library of Congress. CARD 2/2 IIASEN, N. V. AUTHOR: Fiksen, N. V., Engineer. 129-11-7/7 TITLE: Experience Gained in Improving the Technological Processes of Heat Treatment of Large Forgings. (Opyt soversmenstvovaniya tekhnologicheskikh protsessov termicheskoy obrabotki krupnykh pokovok). PERIODICAL: Metallovedeniye i Obrabotka Metallov, 1957, No.11, pp. 77-80 (USSR) CHARLESTER PRESENTATION LES TERRESTOS ANGENES PRESENTA ABSTRACT: The author reviews the experience of the Novo-Kramatorsk Engineering Works imeni I. V. Stalin (Novo-Kramatorskiy Mashinostroitel'nyy Zavod imeni I. V. Stalina)in the field of heat treatment of large forgings for rolling stands for very large presses, hydraulic turbines etc. High speed methods of deep and surface heat treatment are being used for components of cross sectional dimensions of up to 1000 mm. The following are described: the heat treatment of hot rolling rolls made of steel 55%, 60% and 50%; the heat treatment by recharging from one furnace into another (by means of which the duration of the heat treatment of components by means of 50 c.p.s. and high frequency currents (by means of which the cycle duration can be reduced up to 25 fold and the hardening depth can be Experience Gained in Improving the Technological Processes of Heat Treatment of Large Forgings. increased by over 50%) and isothermal annealing of alloy steel forgings. Modernization is scheduled of the large heat treatment furnaces unich will be fittled with up-to-date apparatus and instruments and it is anticipated that thereby an increase in output by 50% and a decrease in fuel consumption by 10% will be achieved. The graph, Fig.3, shows a new heat treatment regime developed in co-operation with Professor M. P. Braun for rolls up to 1000 mm dia. which lasts for 160 hours and combines the annealing, normalization and subsequent high temperature tempering. There are 7 figures. ASSOCIATION: Novo-Kramatorsk Engineering Works. (Hovo-Kramatorskiy Mashinostroitel'nyy Zavoù imeni I. V. Stalina). AVAILABLE: Library of Congress Card 2/2 KON, N.I.; MAKSIMENKO, G.A.; NOVIKOV, P.G.; FIKSEN, N.V.; FROLOVA, M.V. Investigating the cast metal of steel anvil blocks. Lit. proigv. no.1:44-46 Ja 159. (Steel castings) (Steel castings) 18(5,7)AUTHOR: SOV/126-59-9-3/25 Vasilevskiy, P.F., and Novikov, P.G., Candidates of Technical Sciences, and Fiksen N.V., Engineer TITLE: Fundamental Trends of Development in the Technology of Heavy Castings Moulding PERIODICAL: Liteynoye proizvodstvo, 1959, Nr 9, pp 5-13 (USSR) ABSTRACT: Over the last 25 years, Soviet industry attained a comparatively high level in the manufacturing of heavy castings, that is of those weighing over 5 tons. The main works making them are: Novo-Kramatorskiy, Ural'skiy, Yuzhnc-Tral'skiy, Elektrostal'skiy, Sibirskiy and Nevskiy Machine-Building Plants. However, the volume of heavy castings produced at present does not satisfy the actual needs presented by the continuous development of Soviet presented by the continuous development of Soviet industry; hence the importance of stepping-up their production by introducing, first of all, modern methods in the preparing of large-size mouldings. Such large-size parts of different machines and installations, as water turbine stators, high-pressure cylinders for steam turbines, architraves for hydraulic presses, water turbine working wheels, frames Card 1/2 SOV/128-59-9-3/25 Fundamental Trends of Development in the Technology of Heavy Castings Moulding for train blooms, etc., are at present piecemeal cast; their components are then joined together by bolting, welding, or by other means. The author of this article maintains that development of largesize moulds manufacture should come to the forefront. As further means of development of foundry production, the following measures are recommended: i) Windening of application of cast-welded constructions: 2) application of universal assembling caissons: 3) application of large universal assembling casting moulds and models; 4) control over cooling processes of moulds at different stages of casting; 5) widening of application of machine-moulding methods for heavy castings. The use of compulsory cooling of casting moulds was for the first time realized in 1955, in the Minsk Plant imeni Voroshilov, applying a method proposed by Mitichev. There are 1 graph, 1 table, 13 diagrams, 15 photographs and 8 references, 6 of which are Soviet, 7 English and 1 German. Card 2/2 APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413020005-6" BIDULYA, P.N., prof., doktor tekhn.nauk; NOVIKOV, P.G., kand.tekhn.nauk; Frolova, M.V., inzh. I.V., inzh. Investigating the metal quality of large steel castings. [Trudy] TSHIITMASH 97:74-104 '60. (MIRA 13:8) (Steel castings--Testing) (Foundries--Quality control) BRAUN, Mikhail Petrovich; VINOKUR, Bertol'd Bentsionovich; MIROVSKIY, Eduard Ippolityvich; GELLER, Aleksandr L'vovich; MAR'YUSHKIN, Lev Grigor'yevich; FIKSEN, N.V., inzh., retsenzent; FURER, P.Ya., red.; GORNOSTAYPOL'SKAYA, M.S., tekhn. red. [Plastic deformation and heat treatment of large steel alloy parts] Plasticheskaia deformatsiia i teplovais disabotka krupnykh izdelii iz legirovannykh stalei. Moskva, Gos. nauchnotekhn. izd-vo mashinostroit. lit-ry, 1961. 216 p. (MIRA 14:7) (Steel forgings) (Deformations (Mechanics))